

InterviewSolution
Saved Bookmarks
1. |
A bullet fired at an angle of ` 60^@` with the vertical hits the grond at a distance of `2.5 km`., Calculate the distance at which the bullet will hit the grund when fired at an angle of ` 45^@` with vertical. Assuning the speed to be the same. |
Answer» Angel or projection with horizontal, `theta_1 = 90^@- 60^@= 30^@` Horizontal range, ` R_1 = 2.5 km = 2500 m` As` R_1 (u^2 sin 2 hteta)/g , so , `2500 = (u^2 sin 2 xxx 30^@)/g` or 1 u^2/g = ( 2500)/( sin 60^@) = ( 2500)/( sqrt 3//2) = ( 2500 xx2)/( sqrt 3)` When angle of projection is ` 45^@` with vertical, the angle or projection with horizontal, ` theta_2 = 90^2 - 45= 45^@`. Horizontal range, ` R-2 = (u^ sin 2 xx 45^@)/g = u^@/g = ( 2500 xx2)/ (sqrt3)` `= 2886.8 m= 2. 89 km`. |
|