InterviewSolution
Saved Bookmarks
| 1. |
a. Calculate the packing efficiency in a Body Centered Cubic (BCC) lattice. b. Silver forms a ccp lattice. The edge length of its unit cell is 408.6 pm. Calculate the density of silver. (N_(A)=6.022xx10^(23)," Atomic mass of Ag "=108 g mol^(-1)) |
Answer» Solution : LET .a. be the edge length of unit cell .R. be the radius of each particle From `hat(EFD):b^(2)=a^(2)+a^(2)=2a^(2)` From `hat(AFD),c^(2)=b^(2)+a^(2)` `=2a^(2)+a^(2)rArr 3a^(2)` `c=4r` `4r=sqrt3a` `a=(4r)/(sqrt3)` `"Volume of cubic unit cell "=a^(3)=((4r)/(sqrt3))^(3)` `"Number of PARTICLES PER BCC unit cell"=2` `"Packing efficiency"=("Volume occupied by 2 particles "xx100)/("Volume of unit cell")=(2xx4pir^(3))/(3xx((4r)/(sqrt3))^(3))xx100=68%` b. Given : a = 408.6 pm `d=?` `M=108gmol^(-1)z=4` `N_(A)=6.022xx10^(23)` `d=(zm)/(a^(3).NA)=(4xx108)/((408.6)^(3)xx6.022xx10^(23)xx10^(-30))` `d=10.5gcm^(-1)` |
|