1.

A certain endothermic reaction: Ato Product, DeltaH=+ve proceeds ina sequence of three elementary steps with the rate constant K_(1),K_(2) and K_(3) and each one having energy of activation E_(1),E_(2) and E_(3) respectively at 25^(@)C. The observed rate constannt for the reaction is equal to K_(3)sqrt((K_(1))/(K_(2))). A_(1),A_(2) and A_(3) are Arrhenius parameters respectively.For a reversible Aunderset(K_(2))overset(K_(1))(hArr)B,DeltaH=q if pre exponential factors are same. The correct relation is

Answer»

`K_(eq)=e(-q//RT)`
Rate of REACTION `=(-d[A])/(dt)=K_(1)[A]-K_(2)[B]`
At equilibrium `K_(1)[A]=K_(2)[B]`
Either of these

Solution :`r_(1)=K_(1).[A]^(1),K_(1)=A.e^(-epsilon_(1)//RT),r_(2)=K_(2).[B]^(1),K_(2)=A.e^(-epsilon_(2)//RT)`
net rate `R=r_(1)-r_(2)=K_(1)[A]^(1)-K_(2)[B]^(1)` at eq state`r_(1)=r_(2)`
`K_(1)[A]^(1)=K_(2)[B]^(1),K_(eq)=([B]^(1))/([A]^(1))=(K_(1))/(K_(2))=(A.e^(-epsilon_(1)//RT))/(A.e^(-E_(2)//RT)=A^(0).e^(((-epsilon_(1)+epsilon_(2))/(RT))))=A^(0).e^(((-epsilon_(1)-epsilon_(2))/(RT)))`
`K_(eq)=A^(0).e^(-epsilon_(a)//RT)`.So`epsilon_(a)=(epsilon_(1)-epsilon_(2))`


Discussion

No Comment Found