1.

A clock with a brass pendulum keeps correct time at 30^@C . How many seconds will it loose or gain if the temperature falls by 10^@C ? Take, alpha_("brass") = 0.000019^@C^(-1)

Answer»

Solution :Time period of pendulum
` T_30 = 2S`
The new temperature will be `(30 - 10)^@C = 20^@C`and LET `T_20`be the time period at this temperature. Then,
`l_30 = l_0 (1+ 30 alpha)`
`l_20 = l_0 (1+20 alpha)`
where `l_30, l_20` and `l_0`are the lengths of the pendulum at `30^@C, 20^@C` and `0^@C` , respectively.
` T_30 = 2pi sqrt( (l_30)/(g) ) = 2pi sqrt( (l_0 (1+ 30 alpha) )/(g) )`
` T_20 = 2pi sqrt( (l_20)/(g) ) = 2pi sqrt( (l_0 (1+ 20 alpha) )/(g) )`
` therefore (T_20)/(T_30) = sqrt( (1+ 20 alpha)/(1 + 30 alpha)) = (1+ 20 alpha)^(1//2) (1+ 30 alpha)^(-1//2)`
`= (1+ 1/2 xx 20 alpha) (1- 1/2 xx 30 alpha)`
`= (1 + 10 alpha )(1 - 15 alpha) = (1 -5 alpha)`
` therefore T_10 = T_30 (1 - 5alpha)`
` = 2 (1 - 5 xx 1.9 xx 10^(-5) )s `
` = (2- 1.9 xx 10^(-4) ) s`
SINCE `T_20 lt T_30` , the clock will gain time when the temperature falls to `20^@C` .
Gain in time for 2 seconds = `T_30 - T_20 = 1.9 xx 10^(-4) s`
Gain in time for 1 day ` = (1.9 xx 10^(-4) xx 24 xx 3600)/(2)`
= 8.21 s


Discussion

No Comment Found