1.

A coil of inductance L connects the upper ends of two vertical copper bars separated by a distance l . A horizontal conducting connector of mass m starts falling with zero initial velocity along the bars without losing contact with them. The whole system is located in a uniform magnetic field B perpendicular to the plane of the bars. Find the law of motion x(t) of the connector.

Answer»

Solution :Let at any TIME `t` VELOCITY of rodis `v` and current in circuit `i` .
Induced emf in rod `e=Bvl`
`Bvl=L(di)/(dt)`
`B(dx)/(dt)l=L(di)/(dt)`
`Ldi=Bldx`
Integrating
`Li=Blx implies i=(Bl)/(L)x`
`mg-Bil=ma`
`a=g-(Bl)/(m)i=g-(B^(2)l^(2))/(mL)x`
`(dv)/(dt)=g-omega^(2)x` (where `omega=(Bl)/(sqrt(mL)))`
`(d^(2)v)/(dt^(2))=-omega^(2)(dx)/(dt)=-omega^(2)v`
`v` oscillates simple harmonically with ANGULAR frequency
`omega=(Bl)/(sqrt(mL))`.
The solution of this equation
`v=Asin(0megat+phi)`
`t=0` , `v=0` , `phi=0`
`v=Asinomegat`
`(dv)/(dt)=Aomegacosomegat`
At `t=0` ,
`((dv)/(dt)=a=g-(Bl)/(m)i=g(. :. i=0)`
`g=Aomega` `implies A=(g)/(omega)`
`v=Asinomegat`
`v=(g)/(omega)sinomegat`
`(dx)/(dt)=(g)/(omega)sinomegat`
`int_(0)^(x)dx=(g)/(omega)int_(0)^(t)sinomegadt`
`x(g)/(omega)(|-cosomegat|_(0)^(t))/(omega)`
`=(g)/(omega^(2))(1-cosomegat)`
`v=(g)/(omega)sinomegat`
Let `v_(0)((=(g)/(omega))` : velocity AMPLITUDE
`V=V_(0)sinomegat` `x=(g)/(omega^(2))(1-cosomegat)=(v_(0))/(omega)(1-cosomegat)`



Discussion

No Comment Found

Related InterviewSolutions