InterviewSolution
Saved Bookmarks
| 1. |
A copper sphere of radius 3 cm is melted and recast into a right circular cone of height 3 cm. Find the radius of the base of the cone. |
|
Answer» Volume of the sphere = \(\frac{4}{3}πR^3\) = \(\frac{4}{3}π{3}^3\) Volume of the cone = \(\frac{1}{3}πr^2h\) = \(\frac{1}{3}πr^2\times3\) Volume of the cone = volume of the sphere \(\frac{1}{3}πr^2\times3\)= \(\frac{4}{3}π{3}^3\) ⇒ \(\frac{1}{3}\times{r}^2\times3\) = \(\frac{4}{3}\times{3}^3\) ⇒ r2 = \(\frac{{4} \times{3} \times{3}\times{3}\times{3}}{{3}\times{3}}\) ⇒ r2 = 36 cm ⇒ r = 6 cm |
|