Saved Bookmarks
| 1. |
A copper wire and a steel wire of radii in the ratio 1:2, lengths in the ratio 2:1 are stretched by the same force. If the Young's modulus of copper = 1.1 xx 10^11Nm^(-2)find the ratio of their extensions (young's modulus of steel = 2 xx 10^11 N//m^2) . |
|
Answer» Solution :we KNOW `e=(FL)/(pi R^(2)Y) RARR (e_(1))/(e_(2))=((L_(1))/(L_(2))) ((r_(2))/(r_(1)))^(2)((Y_(2))/(Y_(1)))((F)/(F))` Here `r_(1):r_(2)=1:2, L_(1):L_(2)=2:1, Y_(1)=1.1xx10^(11)Nm^(-2)`, `Y_(2)=2.0xx10^(11)Nm^(-2)` `(e_(1))/(e_(2))=(2)/(1)((2)/(1))^(2)((2.0xx10^(11))/(1.1xx10^(11)))=(16)/(1.1)=(160)/(11)` `e_(1):e_(2)=160:11` |
|