InterviewSolution
Saved Bookmarks
| 1. |
A cyclotron has an oscillatory frequency of `10MHz` and a dee radius of `60cm`. Calculate the magnetic field required to accelerate the deutrons of mass `3*3xx10^(-27)kg` and charge `1*6xx10^(-19)C`. Find the energy of deutrons emerging from the cyclotron. |
|
Answer» Correct Answer - `1*3T`; `14*74MeV` Here, `v=10xx10^6Hz=10^7Hz`, `r=0*60m` `m=3*3xx10^(-27)kg`, `q=1*6xx10^(-19)C` As `v=(qB)/(2pim)`, so, `B=(2pimv)/(q)` `:. B=(2xx3*142xx(3*3xx10^(-27))xx10^7)/((1*6xx10^(-19)))=1*3T` Max. KE of the emerging deutron is `K_(max)=(q^2B^2r^2)/(2m)` `=((1*6xx10^(-19))xx(1*3)^2xx(0*6)^2)/(2xx(3*3xx10^(-27)))J` `=((1*6xx10^(-19))^2xx(1*3)^2xx(0*6)^2)/(2xx(3*3xx10^(-27))xx(1*6xx10^(-13)))=MeV` `=14*74MeV` |
|