1.

A cylindrical well of height 40 metres and diameter 14 metres is dug in a field 56 metres long and 11 metres wide. The soil taken out is spread evenly on the field. The increase (in metres) in the level of the field is:1. 12 m2. 19 m3. 13.33 m4. 15 m

Answer» Correct Answer - Option 3 : 13.33 m

Given:

Height of the well (H) = 40 m

The radius of the well (r) = 7 m

Length of the field (l) = 56 m

The breadth of the field (b) = 11 m

Formula used:

The volume of a cylinder (V) = πr2H

The volume of a cuboid (V') = l × b × h

Where l → length

b → breadth

h → height of the cuboid

r → radius 

H → height of the cylinder

Calculations:

Let the required height be h.

The volume of earth = (area of the field –  area of the well) × h

So, (22/7) × 7 × 7 × 40 = {56 × 11 - (22/7) × 7 × 7} × h

⇒ h = (154 × 40)/(616 - 154)

⇒ h = 13.33 m

∴  The increase in the level of the field is 13.33 m.



Discussion

No Comment Found

Related InterviewSolutions