1.

A discrete random variable \( X \) takes the values \( -1,0,2 \) with the probabilities \( 1 / 4,1 / 2,1 / 4 \) respectively. Find \( V(X) \) and Standard Deviation.

Answer»
x-102
P(x)1/41/21/4

 

E(x) = \(\sum x_ip(x_i)\) 
 = -1 x 1/4 + 0 + 1/2 + 2 x 1/4
 = -1/4 + 2/4 = 1/4
E(x2) = \(\sum x_i^2p(x_i)\)
 = (-1)2 x 1/4 + 02 x 1/2 + 22 + 1/4
 = 1/4 + 0 + 1 = 1 + 1/4 = 5/4
v(x) = E(x2) - [E(x)]2
= 5/4 - (1/4)2 = 5/4 - 1/16
\(\frac{20-1}{16}\) = \(\frac{19}{16}\) 
Standard deviation
\(\sigma=\sqrt{v(x)}=\sqrt{\frac{19}{16}}=\frac{\sqrt{19}}4\)


Discussion

No Comment Found

Related InterviewSolutions