1.

A fly wheel of moment of inertia 3 xx 10^(2) kg mạis rotating with uniform angular speed of 4.6 rad s^(-1). If a torque of 6.9 xx 10^2 N m retards he wheel, then the time in which the wheel comes to rest is

Answer»

1.5 s
2 s
0.5 s
1 s

Solution :Here , moment of inertia , `I = 3 xx 10^(2) KG m^(2)`
TORQUE `tau = 6.9 xx 10^(2)` N m
Initial angular SPEED `omega_(0) = 4.6 rad s^(-1)`
Final angular speed , `omega = 0 rad s^(-1)`
As `omega = omega_(0) + alpha t`
`therefore alpha = (omega - omega_(0))/(t) = (0 - 4.6)/(t) = - (4.6)/(t) rad s^(-2)`
Negative sign is for DECELERATION .
Torque , `tau = I alpha`
`6.9 xx 10^(2) = 3 xx 10^(2) xx (4.6)/(t) or t = (3 xx 10^(2) xx 4.6)/(6.9 xx 10^(2)) = 2 s`


Discussion

No Comment Found