1.

A function f : R → R is defined by f(x) = x2. Determine i. range of f ii. {x: f(x) = 4} iii. {y: f(y) = –1}

Answer»

Given,

f : R → R and f(x) = x2

i. range of f 

Domain of f = R 

(set of real numbers) 

We know that the square of a real number is always positive or equal to zero. 

Hence, 

The range of f is the set of all non-negative real numbers. 

Thus, 

Range of f = R +∪ {0} 

ii. {x: f(x) = 4} 

Given,

f(x) = 4 

⇒ x2 = 4 

⇒ x2 – 4 = 0 

⇒ (x – 2)(x + 2) = 0 

∴ x = ±2 

Thus, 

{x: f(x) = 4} = {–2, 2} 

iii. {y: f(y) = –1} 

Given,

f(y) = –1 

⇒ y2 = –1 

However, 

The domain of f is R, and for every real number y, the value of y2 is non-negative. 

Hence, 

There exists no real y for which y2 = –1. 

Thus,

{y: f(y) = –1} = ∅



Discussion

No Comment Found