

InterviewSolution
Saved Bookmarks
1. |
A homogeneous differential equation of the from `(dx)/(dy)=h(x/y)`can be solved by making the substitutionA. `y=vx`B. `v=yx`C. `x=vy`D. `x=v` |
Answer» Correct Answer - C Since the given differential equation `(dx)/(dy)=h((x)/(y))` is homogenous, therefore put `x=vy`, `(dx)/(dy)=v+y(dv)/(dy)` `:. V+y(dv)/(dy)=hvimpliesy(dv)/(dy)=v(h-1)` `implies (1)/((h-1)v)dv=(1)/(y)dy` On integration, `(1)/((h-1))int(1)/(v)dv=int(dy)/(y)` `implies (1)/((h-1))log|v|=log|y|+C` |
|