

InterviewSolution
Saved Bookmarks
1. |
If `y=x/(In|cx|)` (where c is an arbitrary constant) is the general solution of the differential equation `(dy)/(dx)=y/x+phi(x/y)` then function `phi(x/y)` is:A. `x^(2)//y^(2)`B. `-x^(2)//y^(2)`C. `y^(2)//x^(2)`D. `-y^(2)//x^(2)` |
Answer» Correct Answer - D `logc+log|x|=x/y` Differentiating w.r.t. `x,1/x=(y-x(dy)/(dx))/(y^(2))` or `y^(2)/x=y-x(dy)/(dx)` or `(dy)/(dx)=y/x-y^(2)/x^(2)` or `phi(x/y) = -y^(2)/x^(2)` |
|