InterviewSolution
Saved Bookmarks
| 1. |
(a) In the formula `S_(n)=(n)/(2){2a+(n-1)d}`, make d as the subject. (b) Find the value of d, when `S_(n)=240,n=10,` and `a=6`. |
|
Answer» (a) Given formula is `S_(n)=(n)/(2){2a+(n-1)d}`. `rArr(n)/(2){2a+(n-1)d}=S_(n)` `rArr 2a+(n-1)d=(2S_(n))/(n)` `rArr (n-1)d=(2S_(n))/(n)-2a` `rArr d=(2)/(n-1)[(S_(n))/(n)-a]` (b) Substituting the values `S_(n)=240,n=10`, and a=6, we get. `d=(2)/((10-1))[(240)/(10)-6]=(2)/(9)xx18=4` `therefore d=4`. |
|