InterviewSolution
Saved Bookmarks
| 1. |
A metal crystallizes into two cubic phases, face-centred cubic and body-centred cubic, which have unit cell lengths `3.5` and `3.0 A`, respectively. Calculate the ration of densities of fcc and bcc. |
|
Answer» `f.c.c.` unit cell length `=3.5`Å `b.c.c.` unit cell length `=3.0`Å Density in `f.c.c. (z_(1)xxat.wt.)/(V_(1)xxAv. no .)` Density in `b.c.c. (z_(2)xxat.wt.)/(V_(2)xxAv. no .)` `rho_(f.c.c.)/(rho_(b.c.c.))=(z_(1))/(z_(2))xx(V_(2))/(V_(1))` Now, `z_(1)` for `f.c.c.=4,` Also, `V_(1)=a^(3)=(3.5xx10^(-8))^(3)` `z_(2)` for `b.c.c.=2,` Also, `V_(2)=a^(2)=(3.0xx10^(-8))^(3)` `(rho_(f.c.c.))/(rho_(b.c.c.))=(4xx(3.0xx10^(-8))^(3))/(2xx(3.5xx10^(-8)))=1.259` |
|