

InterviewSolution
Saved Bookmarks
1. |
A metal piece of mass 120 g is stretched to form a plane rectangular sheet of area of cross section 0.54m^(2). If length and breadth of this sheet are in the ratio 1:6, find its moment of inertia about an axis passing through its centre and perpendicular to its plane. |
Answer» <html><body><p></p>Solution :Mass `M=120g=120xx10^(-3)<a href="https://interviewquestions.tuteehub.com/tag/kg-1063886" style="font-weight:bold;" target="_blank" title="Click to know more about KG">KG</a>` <br/> area `lb=0.54m^(<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a>)` <br/> `(l)/(b)=(1)/(<a href="https://interviewquestions.tuteehub.com/tag/6-327005" style="font-weight:bold;" target="_blank" title="Click to know more about 6">6</a>),"":.l=(b)/(6)` <br/> `lb=0.54,""(b)/(6).b=0.54` <br/> `b^(2)=0.54xx6impliesb=sqrt3.24=1.8m` <br/> Similarly `l=(0.54)/(1.8)=0.3m`. <br/> Moment of <a href="https://interviewquestions.tuteehub.com/tag/inertia-1043176" style="font-weight:bold;" target="_blank" title="Click to know more about INERTIA">INERTIA</a> <br/> `I=(M(l^(2)+b^(2)))/(12)=(120xx10^(-3)[(0.3)^(2)+(1.8)^(2)])/(12)` <br/> `I=33.3xx10^(-3)<a href="https://interviewquestions.tuteehub.com/tag/kgm-2769156" style="font-weight:bold;" target="_blank" title="Click to know more about KGM">KGM</a>^(2)`</body></html> | |