1.

A non-homogeneous sphere of radius R has the following density variation : rho{{:(rho_(0),rleR//3),(rho_(0)//2,(R//3) lt r le (3R//4)),(rho_(0)//8,(3R//4) lt r le R):} The gravitational field at a distance 2R fromthe centre of the sphere is

Answer»

`0.1piGRrho_(0)`
`0.2piGRrho_(0)`
`0.3piGRrho_(0)`
`0.4piGRrho_(0)`

Solution :(a) The gravitational field at a distance 2R from the CENTRE of the sphere is
`E=(GM)/((2R)^(2))`
where M is the mass of the WHOLE sphere.

Here,
`M=(4)/(3)pi((R)/(3))^(3) rho_(0)+{(4)/(3)pi((3)/(4)R)^(3)-(4)/(3)pi((R)/(3))^(3)}(rho_(0))/(2)+{(4)/(3)PIR^(3)-(4)/(3)pi((3)/(4)R)^(3)}(rho_(0))/(8)`
`=(4)/(3)piR^(3)rho_(0){(1)/(27)+(27)/(128)-(1)/(54)+(1)/(8)-(27)/(512)}`
`=(4)/(3)piR^(3)rho_(0){(512+2916+256+1728-729)/(13824)}`
`=(4)/(3)piR^(3)rho_(0){(5156-985)/(13824)}=(4)/(3)piR^(3)rho_(0){(4171)/(13824)}`
`=0.402piR^(3)rho_(0)`
`:. E=(G(0.402piR^(3)rho_(0)))/((2R)^(2))=0.1piGRrho_(0)`


Discussion

No Comment Found