InterviewSolution
Saved Bookmarks
| 1. |
A particle of mass `m` starts moving in a circular path of canstant radiur `r` , such that iss centripetal acceleration`a_(c)` is varying with time a=`t` as `(a_(c)=k^(2)r//t)` , where `K` is a contant. What is the power delivered to the particle by the force acting on it ? |
|
Answer» Correct Answer - A::B::D As `a_(c)=(v^(2)//r)` so `(v^(2)//r)=k^(2)rt^(2)` :. Kinetic energy `K=(1)/(2)mv^(2)=(1)/(2)mk^(2)r^(2)t^(2)` Now, from work-energy theorem `W=DeltaK=(1)/(2)mk^(2)r^(2)t^(2)-0` So, `P=(dW)/(dt)=(d)/(dt)((1)/(2)mk^(2)r^(2)t^(2))=mk^(2)r^(2)t` Alternate solution: Given that `a_(c)=k^(2)rt^(2)` , so that `F_(c)=ma_(c)=mk^(2)rt^(2)` Now, as `a_(c)=(v^(2)/r)` , so `(v^(2)//r)=k^(2)rt^(2)` or `v=krt` So, that `a_(t)=(dv//dt)=kr` i.e. `F_(t)=ma_(t)=mkr` Now, as `F=F_(c)+F_(t)` So, `P=(dW)/(dt)=F.v=(F_(c)+F_(t))_(v)` In circular motion, `F_(c)` is perpendicular to `v` while `F_(t)` parallel to it, so `P=F_(t)v` `P=mk^(2)r^(2)t` |
|