1.

A particle which is constant to move along the `x- axis` , is subjected to a force in the same direction which varies with the distance `x` of the particle from the origin as `F(x) = -Kx + ax^(3)` . Hero `K` and `a` are positive constant . For `x ge 0`, the fanctional from of the patential every `U(x) of the particle isA. B. C. D.

Answer» Correct Answer - D
`F = (-dU)/(dx) rArr dU = - F dx`
`rArr U = - int_(0)^(x) (-kx +ax^(3)) dx = (kx^(2))/(2) - (ax^(2))/(4)`
`:. `We get `U =0` at `x= 0` and `x= sqrt(2k//a)`
So `F = 0` at `x= 0`
i.e. , slope of `U` - x graph is at `x= 0`


Discussion

No Comment Found

Related InterviewSolutions