1.

A physical quantity Q is found to depend on quantities x,y,z obeying relation Q = (x^(2)y^(3))/(z^(1)) . The percentage errors in x, y, and z are 2%, 3% and 1% respectively. Find the percentage error in Q.

Answer» <html><body><p></p><a href="https://interviewquestions.tuteehub.com/tag/solution-25781" style="font-weight:bold;" target="_blank" title="Click to know more about SOLUTION">SOLUTION</a> :Let <a href="https://interviewquestions.tuteehub.com/tag/q-609558" style="font-weight:bold;" target="_blank" title="Click to know more about Q">Q</a> = `(x^(2)y^(3))/(<a href="https://interviewquestions.tuteehub.com/tag/z-750254" style="font-weight:bold;" target="_blank" title="Click to know more about Z">Z</a>)` <br/> It is given, `(Deltax)/(x) = 2%, (Deltay)/(y)= 3%, (Deltaz)/(z) = <a href="https://interviewquestions.tuteehub.com/tag/1-256655" style="font-weight:bold;" target="_blank" title="Click to know more about 1">1</a>%` <br/> `(DeltaQ)/(Q) = 2((Deltax)/(x)) + 3((Deltay)/(y)) + 1 ((Deltaz)/(z)) = 2(2%) + 3(3%) +1(1%)` <br/> `(DeltaQ)/(Q) = 4% + 9% + 1% = 14%`</body></html>


Discussion

No Comment Found