1.

A rain drop of mass m, starts falling from rest and it collects water vapour and grows. If it gains lambda kg/s, find its velocity at any instant.

Answer»

Solution :`(d)/(dt) (MV) = mg , (dm)/(dt) = lambda or m= lambda t + K`
where K is a constant when t=0 , `m=m_0 :. m=m_0 + lambda t `
so , ` (d)/(dt) {(m_0 + lambda t)v} = (m_0 + lambda t ) g`
Integrating , `(m_0 + lambda t) v= int (m_0 + lambda t) g dt = (m_0 t + ( lambda t^(2))/(2) ) g + C ` where C is constant
when t =0, v=0 ` :.` C =0
`:. (m_0 + lambda t) v = ( m_0 t + ( lambda t^2)/(2)) g , v=(g(m_0 t + (lambda t^2)/( 2)))/(m_0 + lambda t ) =(g (t+ (lambdat^(2))/(2m_0)))/( 1 + (lambda t)/( m_0))`
This mean VELOCITY changes w.r.t . time


Discussion

No Comment Found