Saved Bookmarks
| 1. |
A real valued function f defined as f(x) = 2x2 - In |x| has |
|
Answer» Correct option is (C) Only two minima f(x) = 2x2 - ln |x| f'(x) = 0 gives 4x - 1/x = 0 ⇒ 4x2 = 1 ⇒ x = \(\pm\frac12\) Also, f"(x) = 4 + \(\frac1{x^2}>0\) \(\therefore\) Critical points x = -1/2 & x = 1/2 are point of minima of function f. |
|