1.

A real valued function f defined as f(x) = 2x2 - In |x| has

Answer»

Correct option is (C) Only two minima

f(x) = 2x2 - ln |x|

f'(x) = 0 gives

4x - 1/x = 0

⇒ 4x2 = 1

⇒ x = \(\pm\frac12\)

Also, f"(x) = 4 + \(\frac1{x^2}>0\)

\(\therefore\) Critical points x = -1/2 & x = 1/2 are point of minima of function f.



Discussion

No Comment Found

Related InterviewSolutions