1.

A relation φ from C to R is defined by xφy |x| = y. Which one is correct? A. (2 + 3i) φ 13 B. 3 φ (−3) C. (1 + i) φ 2 D. iφ 1.

Answer»

Option : (D)

We have,

xφy |x| = y 

By checking the options,

 A. (2 + 3i) φ 13 

x = 2 + 3i;

|x| = \(\sqrt{2^2+3^2}\) 

= √13 

Therefore, 

|x|≠ y. 

So, 

Option A is incorrect.

B. 3 φ (−3)

x = 3;

|x| = \(\sqrt{3^2}\) 

= 3 

3 ≠(-3) 

Therefore, 

Option B is incorrect.

C. (1 + i) φ 2

|x| = \(\sqrt{1^2+1^2}\) 

= √2 

√2 ≠ 2 

Therefore, 

Option C is also incorrect.

D. iφ 1 

x = i;

|x| = \(\sqrt{1^2}\) 

= 1 

1 = 1 

|x| = y. 

Therefore, 

Option D is correct.



Discussion

No Comment Found

Related InterviewSolutions