1.

If R be a relation defined as a R b ⇔ | a | < b, then R is(a) Reflexive only (b) Symmetric only (c) Transitive only (d) Reflexive and transitive but not symmetric

Answer»

(c) Transitive only

• There exists a real number –2, such that | –2 | is not less than –2 as 2 \(\not\leq\)- 2.

Thus for all negative, real numbers \(x\), | \(x\) | \(\not\leq\) \(x\)

Hence (\(x\), \(x\)) ∉ R V real numbers. 

Hence R is not reflexive. 

• R is not symmetric since there exist real numbers –2 and 3 such that | –2 | ≤ 3 but | 3 | \(\not\leq\) - 2, 

i.e., (–2, 3) ∈ R \(\not\Rightarrow\) (3, –2) ∈ R. 

• R is transitive since V real numbers a, b, c 

(a, b) ∈ R, (b, c) ∈ R ⇒ | a | ≤ b and | b | ≤ c 

⇒ | a | ≤ b ≤ | b | ≤ c                       

( For all \(x\), | \(x\) | ≤ \(x\)

⇒ | a | ≤ c 

⇒ (a, c) ∈ R



Discussion

No Comment Found

Related InterviewSolutions