Saved Bookmarks
| 1. |
A small object of uniform density rolls up a curved surface with an initial velocity v'. It reaches upto to maximum height of (3v^(2))/(4g) with respect to the initial position. The object is |
|
Answer» ring Given, `H=(3v^(2))/(4g)` `v^(2)=(2gh)/(1+(K^(2))/(R^(2)))=(2g 3v^(2))/(4g(1+(K^(2))/(R^(2))))=(6 gv^(2))/(4g(1+(K^(2))/(R^(2))))` `1=(3)/(2(1+(K^(2))/(R^(2))))or 1+(K^(2))/(R^(2))=(3)/(2)or (K^(2))/(R^(2))=(3)/(2)-1=(1)/(2)` `K^(2)=(1)/(2)R^(2)` (EQUATION of disc) Hence, the object is disc. |
|