1.

A solid ball of mass m and radius r spinning with angular velocity omega falls on a horizontal slab of mass M with rough upper surface (coefficient of friction mu) and smooth lower surface. Immediately after collision the normal component of velocity of the ball remains half of its value just before collision and it stops spinning. Find the velocity of the sphere in horizontal direction immediately after the impact (given: Romega= 5).

Answer» <html><body><p><br/></p>Solution :`J=int N <a href="https://interviewquestions.tuteehub.com/tag/dt-960413" style="font-weight:bold;" target="_blank" title="Click to know more about DT">DT</a> =mv/<a href="https://interviewquestions.tuteehub.com/tag/2-283658" style="font-weight:bold;" target="_blank" title="Click to know more about 2">2</a> -(-mv)=3/2,mv`………..i <br/> `muJR=intmu(N dt)<a href="https://interviewquestions.tuteehub.com/tag/r-611811" style="font-weight:bold;" target="_blank" title="Click to know more about R">R</a>=(2/5mR^(2)omega-0)=2/5mR^(2)omega`……..<a href="https://interviewquestions.tuteehub.com/tag/ii-1036832" style="font-weight:bold;" target="_blank" title="Click to know more about II">II</a> <br/> <img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/BMS_VOL2_C03_E01_310_S01.png" width="80%"/> <br/> From eqn i and ii we get <br/> `3/2mv rmu=2/5mR^(2)omega`……….iii <br/>let `V` and `V_(1)` be the speeds of the plank and the sphere, respectively in the horizontal direction. <br/>`muJ=intmj Ndt=Mv=mV_1`........iv <br/> <a href="https://interviewquestions.tuteehub.com/tag/form-996208" style="font-weight:bold;" target="_blank" title="Click to know more about FORM">FORM</a> eqn i and iv `mu(3/2)mv=MV` <br/> `V=3/2(mumv)/M=3/2 4/15 (mRomega)/M=2/5Romega` <br/> and `V_(1)=2/5Romega=2m//s`</body></html>


Discussion

No Comment Found