InterviewSolution
Saved Bookmarks
| 1. |
A source `S_(1)` is producing `10^(15)` photons per second of wavelength `5000Ã…`. Another source `S_(2)` is producing `1.02xx10^(15)` Then, `("Power of" S_(2))//("Power of"S_(1))` is equal toA. `1.00`B. 1.02C. 1.04D. 0.98 |
|
Answer» Correct Answer - A (a) : For a source `S_(1)`, Wavelength, `lamda_(1)=5000Ã…` Number of photons emitted per second, `N_(1)=10^(15)` Energy of each photon, `E_(1)=(hc)/(lamda_(1))` Power of source `S_(1),P_(1)=E_(1)N_(1)=(N_(1)hc)/(lamda_(1))` For a source `S_(2)`, Wavelength, `lamda_(2)=5100Ã…` Number of photons emitted per second, `N_(2)=1.02xx10^(15)` Energy of each photon, `E_(2)=(hc)/(lamda_(2))` Power of source `S_(2),P_(2)=N_(2)E_(2)=(N_(2)hc)/(lamda_(2))` `:.("Power of "S_(2))/("Power of "S_(1))=(P_(2))/(P_(1))=(lamda_(2))/((N_(1)hc)/lamda_(1))=(N_(2)lamda_(1))/(N_(1)lamda_(2))` `=((1.02xx10^(15)"photons"//s)xx(5000xx10^(-10)))/((10^(15)"photons"//s)xx(5100xx10^(-10)))=(51)/(51)=1` |
|