1.

A Sphere And A Cube Have The Same Surface Area. Find The Ratio Of Their Volumes?

Answer»

SA of a SPHERE: 4πr² 

SA of a CUBE: 6x² 

4πr² = 6x² 

r²/x² = 6 / 4π 

(r/x)² = 3 / 2π 

r/x = (3 / 2π)^0.5 

Volume of a sphere: 4/3 πr³ 

Volume of a cube: x³ 

Find the ratio meaning (4/3 πr³)/x³ 

= (4π/3)(r³/x³) 

= (4π/3)(r/x)³ 

= (4π/3)(3 / 2π)^1.5 

= (2²π/3)[3^1.5 / (2^1.5)(π^1.5)] 

= √2√3 / √π 

= √(6/π).

SA of a sphere: 4πr² 

SA of a cube: 6x² 

4πr² = 6x² 

r²/x² = 6 / 4π 

(r/x)² = 3 / 2π 

r/x = (3 / 2π)^0.5 

Volume of a sphere: 4/3 πr³ 

Volume of a cube: x³ 

Find the ratio meaning (4/3 πr³)/x³ 

= (4π/3)(r³/x³) 

= (4π/3)(r/x)³ 

= (4π/3)(3 / 2π)^1.5 

= (2²π/3)[3^1.5 / (2^1.5)(π^1.5)] 

= √2√3 / √π 

= √(6/π).



Discussion

No Comment Found

Related InterviewSolutions