1.

A spherical oil drop falls at a steady rate of \( 2 cm / s \) in still air. Find diameter of the drop. [Take \( g =980 cm / s ^{2} \). The coefficient of viscosity of air \( 4.8 \times 10^{-4} \) poise, Density of oil \( =0.8 glcm ^{3} \), Density of air \( =1 g / cm ^{3} J \)

Answer»

V = 2 cm/s

v = 0.02m/s

\(\eta\) = 4.8 x 10-4

Density of oil = 0.8gl cm3

Density of air = 18/cm3 J

We know that

r2 = \(\frac{9\eta v}{29(p-\sigma)}\)

r2 = \(\frac{9\times4.8\times10^{-5}\times0.02}{2\times9.8(1000-800)}\) 

r2 = \(\frac{0.864\times10^{-5}}{3920}\)

r2 = 0.00022 x 10-5

r2 = 2.2 x 10-9

r = \(\sqrt{2.2\times10^{-9}}\) m

hence diameter of spherical drop

d = 2 x \(\sqrt{2.2\times10^{-9}}\) m



Discussion

No Comment Found

Related InterviewSolutions