InterviewSolution
Saved Bookmarks
| 1. |
A tangent to the hyperbola `y = (x+9)/(x+5)` passing through the origin isA. `x+ 25y =0`B. `5x+y =0`C. `5x-y =0`D. `x -25y =0` |
|
Answer» Correct Answer - A `y = (x+9)/(x+5) =1+ (4)/(x+5)` `(dy)/(dx)` at `(x_(1),y_(1)) = (-4)/((x_(1)+5)^(2))` `:.` Equation of tangent `y - y_(1) = (-4)/((x_(1)+5)^(2)) (x-x_(1))` `y -1 - (4)/(x_(1)+5) = (-4)/((x_(1)+5)^(2)) (x-x_(1))` Since it passes through (0,0) `(x_(1)+5)^(2) + 4(x_(1)+5) + 4x_(1) =0` `x_(1) =- 15` or `x_(1) =-3`. So equations are `x + 25y = 0` or `x + y =0`. |
|