InterviewSolution
| 1. |
A thin wire of length L and uniform linear mass density λ is bent into a circular ring. The MI of the ring about a tangential axis in its plane is(A) \(\frac{3\lambda L^2}{8\pi^2}\)(B) \(\frac{8\pi^2}{3\lambda L^3}\)(C) \(\frac{3\lambda L^3}{8\pi^2}\)(D) \(\frac{8\pi^2}{3\lambda L^{2-}}\) |
|
Answer» Correct Option is (C) \(\frac{3 L^3 \lambda}{8 \pi ^2}\) Moment of inertia of the coil about the diameter \(I = \frac{1}{2}MR^2\) \(\because M = V \times \lambda\) \(L = 2 \pi R\) \(R = \frac{L}{2 \pi}\) \(I = \frac{1}{2} L \lambda \frac{L^2}{4 \pi ^2}\) \(I = \frac{1}{2} \times L \times \lambda \times \frac{L^2}{4 \pi ^2}\) \(I = \frac{L^3 \lambda}{8 \pi ^2}\) Using parallel axis theorem \(I = I_{cm} + MR^2\) \(I = \frac{L^3 \lambda}{8 \pi ^2} + L \lambda (\frac{L}{2 \pi})^2\) \(I = \frac{L^3 \lambda}{8 \pi ^2} + \frac{L \lambda L^2}{4 \pi^2}\) \(I = \frac{3 L^3 \lambda}{8 \pi ^2}\) (C) \(\frac{3\lambda L^3}{8\pi^2}\) |
|