1.

a triangle `A B C`with fixed base `B C`, the vertex `A`moves such that `cosB+cosC=4sin^2A/2dot`If `a ,ba n dc ,`denote the length of the sides of the triangle opposite to the angles `A , B ,a n dC`, respectively, then`b+c=4a`(b) `b+c=2a`the locus of point `A`is an ellipsethe locus of point `A`is a pair of straight linesA. b+c=4aB. b+c=2aC. the locus of point A is an ellipseD. the locus of point A is a pair of straight lines

Answer» Given `cos B+cos C=4 sin^(2).(A)/(2)`
`or 2 cos((B+C)/(2))cos ((B-C)/(2))=4 sin^(2).(A)/(2)`
or `cos.((B-C)/(2))=2sin.((A)/(2))`
`or 2 sin.(B+C)/(2)cos.(B-C)/(2)=4 sin.(A)/(2)cos.(A)/(2)`
or `sin B+sin C=2 sin A`
or `b+c=2a`
Thus, sum of two variable sides is constant .
Hence the locus of vertex A is an ellipse with B and C as foci,


Discussion

No Comment Found

Related InterviewSolutions