1.

`a(y+z)=x, b(z+x)=y, c(x+y)=z` prove that `x^2/(a(1-bc))=y^2/(b(1-ca))=z^2/(c(1-ab))`

Answer» `a=x/(y+z), b=y/(z+x),c=z/(x+y)`
`x^2/(a(1-bc))=x^2/(x/(y+z)(1-y/(z+x)xxz/(x+y))`
`=(x(x+y)(y+z)(z+x))/(x(z+x+y))`
`=((x+y)(y+z)(z+x))/(z+x+y)`equation1
`y^2/(b(1-ac))=y^2/(y/(z+x)(1-x/(y+z)xxz/(x+y))`
`=(y(x-y)(y+z)(z+x))/(y(x+y+z))`
`=((x+y)(y+z)(z+x))/(z+x+y)`equation2
`z^2/(c(1-ab))=(z^2)/((z/(x+y)(1-x/(y+z)xxy/x-z)`
`=(z(x-y)(y-z)(z+x))/(z(y+x+z)`
`=((x+y)(y+z)(z+x))/(z+x+y)`equation3
`then`
`equation1=equation2=equation3`


Discussion

No Comment Found