InterviewSolution
Saved Bookmarks
| 1. |
आव्यूह `A=[(3,2,1),(0,-1,-2),(-3,4,2)]` से `A^(-1)` ज्ञात कीजिए। |
|
Answer» `|A|=|(3,2,1),(0,-1,-2),(-3,4,2)|` `=3|(-1,-2),(4,2)|-2|(0,-2),(-3,2)|+1|(0,-1),(-3,4)|` `=3(-2+8)-2(0-6)+1(0-3)` `=18+12-3=27!=0` `:.A` एक व्युत्क्रमणीय अव्यूह है। अव्यूह A के सहगुणनखण्ड `c_(11)=(-1)^(1+1)|(-1,-2),(4,2)|=(-2+8)=6` `c_(12)=(-1)^(1+2)|(0,-2),(-3,2)|=-(0-6)=6` `c_(13)=(-1)^(1+3)|(0,-1),(-3,4)|=0-3=-3` `=c_(21)=(-1)^(2+1)+|(2,1),(4,2)|=-(4-4)=0` `c_(22)=(-1)^(2+2)|(3,1),(-3,2)|=6+3=9` `c_(23)=(-1)^(2+3)|(3,2),(-3,4)|=-(12+6)=-18` `c_(31)=(-1)^(3+1)|(2,1),(-1,-2)|=-4+1=-3` `c_(32)=(-1)^(3+2)|(3,1),(0,-2)|=-(-6-0)=6` `c_(33)=(-1)^(3+3)|(3,2),(0,-1)|=-3-0=-3` `:.adj.A=[(c_(11),c_(12),c_(13)),(c_(21),c_(22),c_(23)),(c_(31),c_(32),c_(33))]` `[(6,6,-3),(0,9,-18),(-3,6,-3)]=[(6,0,-3),(6,9,6),(-3,-18,-3)]` और `A^(-1)=1/(|A|).adj.A` `=1/27[(6,0,-3),(6,9,6),(-3,18,-3)]=3/27[(2,0,-1),(2,3,2),(-1,-6,-1)]` `=1/9[(2,0,-1),(2,3,2),(-1,-6,-1)]` |
|