

InterviewSolution
Saved Bookmarks
1. |
AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (see Fig. 7.37). Show that the line PQ is the perpendicular bisector of AB |
Answer» In`/_APQ and /_BPQ` PA=PB QA=QB PQ=PQ `/_APQcong/_BPQ`(SSS) `angleAPQ=angleBPQ` `angleAQP=angleBQP` `anglePAQ=anglePBQ` In `/_APC and /_BPC` `angleAPC=angleBPL` `anglePAC=anglePBC` AP=BP `/_APC cong /_ BPC` (ASA) `anglePCA=anglePCB` AC=BC(C is Mid point of AB) `anglePCA+anglePCB=180^0` `2anglePCA=180^0` `anglePCA=90^0` |
|