

InterviewSolution
Saved Bookmarks
1. |
ABCD is a trapezium in which AB||DC and its diagonals intersect each other at the point O. Show that `(A O)/(B O)=(C O)/(D O)`. |
Answer» `In/_ACD` EO||DC `(AE)/(ED)=(AO)/(OC)`-(1) `In/_BCD` OF||DC `(BO)/(OD)=(BF)/(FC)` `In/_ADB` EO||AB `(EA)/(DE)=(OB)/(OD)` putting this value in equation 1 `(OC)/(OB)((AO)/(OC)=(OB)/(OD))(OC)/(OB)` `(AO)/(OB)=(OC)/(OD)` |
|