1.

ABCD is a trapezium in which AB||DC and its diagonals intersect each other at the point O. Show that `(A O)/(B O)=(C O)/(D O)`.

Answer» `In/_ACD`
EO||DC
`(AE)/(ED)=(AO)/(OC)`-(1)
`In/_BCD`
OF||DC
`(BO)/(OD)=(BF)/(FC)`
`In/_ADB`
EO||AB
`(EA)/(DE)=(OB)/(OD)`
putting this value in equation 1
`(OC)/(OB)((AO)/(OC)=(OB)/(OD))(OC)/(OB)`
`(AO)/(OB)=(OC)/(OD)`


Discussion

No Comment Found

Related InterviewSolutions