1.

AD, BE, CF are internal angular bisectors of Delta ABC and I is the incentre. If a(b+c)sec.(4)/(2)ID+b(a+c)sec.(B)/(2)IE+c(a+b)sec.(C )/(2)IF=kabc, then the value of k is

Answer»

1
2
3
4

Solution :
`(ID)/(AD)=(ID)/((2bc)/(b+c)cos.(A)/(2))=(a(b+c)SEC.(A)/(2).ID)/(2abc)`
Now `(AI)/(ID)=(AB)/(BD)=(c )/((ac)/(b+c))=(b+c)/(a)`
`therefore (ID)/(AD)=(ID)/(AI+ID)=(a)/(a+b+c)`
`therefore(ID)/(AD)+(IE)/(BE)+(IF)/(CF)=(a+b+c)/(a+b+c)=1`
`therefore a(b+c)sec.(A)/(2)ID+b(a+c)sec.(B)/(2)IE + c(a+b)sec.(C )/(2)IF`
= 2abc
`therefore K = 2`


Discussion

No Comment Found

Related InterviewSolutions