

InterviewSolution
1. |
Add the following rational numbers:(i) \(\frac{3}{4}\) and \(\frac{-5}{8}\)(ii) \(\frac{5}{-9}\) and \(\frac{7}{3}\)(iii) -3 and \(\frac{3}{5}\)(iv) \(\frac{-7}{27}\) and \(\frac{11}{18}\)(v) \(\frac{31}{-4}\) and \(\frac{-5}{8}\)(vi) \(\frac{5}{36}\) and \(\frac{-7}{12}\) |
Answer» i) The denominators are 4 and 8 . The LCM of 4 and 8 is 8. \(\frac{-3}{4}=\frac{(3\times2)}{(4\times2)}=\frac{6}{8}\) and \(=\frac{-5}{8}\) \(\frac{-5}{8}=\frac{(-5\times1)}{(8\times1)} \) Hence the denominators are same.Now, \(\frac{6}{8}+\frac{-5}{8} \) = \(\frac{6+(-5)}{8}=\frac{(6-5)}{8}\) = \(\frac{1}{8} \) ii) We convert the denominators in to positive numbers \(\frac{5}{-9} =\frac{(5\times-1)}{(-9\times-1)}\) = \(\frac{-5}{9}\) The denominators are 9 and 3.The LCM for 9 and 3 is 9 \(\frac{-5}{9}=\frac{(-5\times1)}{(9\times1)}\) = \(\frac{-5}{9}\) and \(\frac{7}{3}\) \(=\frac{(7\times3)}{(3\times3)}\) = \(\frac{21}{9}\) Since the denominators are same now we can add them directly.We get \(\frac{-5}{9}\) + \(\frac{21}{9}=\frac{(-5+21)}{9}\) = \(\frac{16}{9}\) iii) The denominators are 1 and 5.The L.C.M of 1 and 5 is 5. \(\frac{-3}{1}=\frac{(3\times5)}{(1\times5)}\) = \(\frac{-15}{5}\) and \(\frac{3}{5}\) \(=\frac{(3\times1)}{(5\times1)}\) = \(\frac{3}{5}\) Since the denominators are same now we can add them directly.We get \(\frac{-15}{5}+\frac{3}{5}=\frac{(-15+3)}{5}\) = \(\frac{-12}{5}\) iv) The denominators are 27 and 18. The L.C,M of 27 and 18 is 54. \(\frac{-7}{27}=\frac{(-7\times2)}{(27\times2)}\) = \(\frac{-14}{54}\) and \(\frac{11}{18}\) \(=\frac{(11\times3)}{(18\times3)}\) = \(\frac{33}{54}\) Since, the denominators are same we can add them directly \(\frac{-14}{54} + \frac{33}{54}=\frac{(-14+33)}{54}\) = \(\frac{19}{54}\) v) Firstly we convert the denominators to positive numbers. \(\frac{31}{-4}=\frac{(31\times-1)}{(-4\times-1)}\) = \(\frac{-31}{4}\) The denominators are 4 and 8. The L.C.M of 4 and 8 is 8 \(\frac{-31}{4}=\frac{(-31\times2)}{(4\times2)}\\=\frac{-62}{8}\) \(\frac{5}{8}=\frac{(-5\times1)}{(8\times1)}\\=\frac{-5}{8}\) Since the denominators are same we can add them directly as \(\frac{-62}{8}+\frac{(-5)}{8}=\frac{(-62+(-5))}{8}\\\frac{(-62-5)}{8}=\frac{-67}{8}\) vi) : The denominators are 36 and 12. The L.C.M of 36 and 12 is 36. \(\frac{-5}{36}=\frac{(5\times1)}{(36\times1)}\\=\frac{5}{36}\) \(\frac{-7}{12}=\frac{(-7\times3)}{(12\times3)}\\\frac{-21}{36}\) Now, the denominators are same we can add them directly.We get \(\frac{5}{36} + \frac{-21}{36}=\frac{(5+(-21))}{36}\\\frac{5-21}{36}=\frac{16}{36}\\\frac{-4}{9}\) |
|