InterviewSolution
Saved Bookmarks
| 1. |
An alternating current is given by the equation i = (i_1 cos omegat + i_2 sin omegat). The rms current is given by …….. |
|
Answer» `1/sqrt2 (i_1+i_2)` `lt i^2 gt = lt (i_1 cos omegat + i_2 sin omegat)^2gt` ` lt i^2 gt = lt i_1^2 cos^2 omegat gt + lt i_2^2 sin^2 omegat gt + lt 2i, i_2 sin omegat cos omegat gt` ….(1) But `lt i_1^2 cos^2 omegat gt = i_1^2 lt (1+cos 2 omegat)/2 gt` `=i_1^2 (:1/2:)+(:(cos2omegat)/2:)]` AVERAGE of `cos2omegat` one period =ZERO `therefore lt i_1^2 cos^2 omegat gt =i_1^2/2`....(2) Similarly `lt i_2^2 sin^2 omegat gt = i_2^2/2`...(3) And value of `lt2sin omegat cos omegatgt` on one period =0 ...(4) `therefore` From equation (1),(2) , (3) and (4) `lti^2gt=i_1^2/2+i_2^2/2+0` `=(i_1^2+i_2^2)/2` `therefore i_(rms)=sqrt(lti^2gt)=sqrt((i_1^2+i_2^2)/2)=1/sqrt2(i_2^2+i_2^2)^(1/2)` |
|