1.

An ellipse E,(x^(2))/(a^(2))+(y^(2))/(b^(2))=1, centred at point O has AB and CD as its major and minor axes, respectively. Let S_(1) be one of thefoci of the ellipse, the radius of the incircle of traingle OCS_(1) be 1 unit, adn OS_(1)=6 units The equation ofthe director circle of E is

Answer»

`x^(2)+y^(2)=48.5`
`x^(2)+y^(2)=sqrt(97)`
`x^(2)+y^(2)=97`
`x^(2)+y^(2)=sqrt(48.5)`

Solution :
`:.OS_(1)=ae=6,OC=b`
Also,` CS_(1)=a`
`:. "Area of " DeltaOCS_(1)=(1)/(2)=(OS_(1))xx(OC)=3b`
`:.`Semi-perimeter of `DeltaOCS_(1)=(1)/(2)=(OS_(1)+OC+CS_(1))`
`=(1)/(2)(6+a+b) ""(1)`
`:.` In radius of `DeltaOCS_(1) ","( "Using" r=(Delta)/(S))`
=` (3b)/((1)/(2)(6+a+b))=1""("Using"r=(Delta)/(S))`
`or 5b=6+a""(2)`
Also, `b^(2)=a^(2)-a^(2)e^(2)=a^(2)-36""(3)`
From (2), we get
`25(a^(2)-36)=36+a^(2)+12a`
`or 2a^(2)-a-78=0`
`a=(13)/(2),-6`
`:. a=(13)/(2) and b=(5)/(2)`
Area or ellipse `=piab=(65pi)/(4)` sq. UNIT
Perimeter of `DeltaOCS_(1)=6+a+b=6+(13)/(2)+(5)/(2)=15` UNITS
The equation of DIRECTOR circle is
`x^(2)+y^(2)=a^(2)+b^(2)`
or `x^(2)+y^(2)=(97)/(2)`


Discussion

No Comment Found

Related InterviewSolutions