InterviewSolution
Saved Bookmarks
| 1. |
An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), C_(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to |
|
Answer» `2a_(98) - a_(99)^(2)` or `a_(0) + a_(1)x+a_(2)x^(2) + "...."+a_(99)x^(99) + x^(100)` `= (x-.^(99)C_(0))(x-.^(99)C_(1)) (x-.^(99)C_(2))"....."(x-.^(99)C_(99))` Now, sum ofroot is `.^(99)C_(0)+.^(99)C_(1)+.^(99)C_(2)+"...."+.^(99)C_(99)= - (a_(99))/("COEFFICIENT of" x^(100))` or `a_(99) = - 2^(99)` Also, sum of PRODUCTOF roots taken two at a time is `(a_(99))/("coefficient of" x^(100))` `:. underset(0 le i ltj le 99)(sumsum) .^(99)C_(i).^(99)C_(j) = ((underset(i=0)overset(99)sumunderset(j=0)overset(99)sum.^(99)C_(i).^(99)C_(j))- underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= ((underset(i=0)overset(99)sum.^(99)C_(i)2^(99))-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= (2^(99)2^(99)-underset(i=0)overset(99)sum(.^(99)C_(i))^(2))/(2)` `= (2^(198) - .^(198)C_(99))/(2)` `(.^(99)C_(0))^(2)+ (.^(99)C_(1))^(2) + "......" + (.^(99)C_(99))^(2)` `= (.^(99)C_(0) + .^(99)C_(1) + .^(99)C_(2) "......." + .^(99)C_(99))^(2) - 2 underset(0lei ltjle99)(sumsum).^(99)C_(i).^(99)C_(j)` `=(-a_(99))^(2) - 2a_(98)` `= a_(99)^(2) - 2a_(98)` |
|