1.

An ideal gas of adiabatic exponent `gamma` is expanded so that the amount of heat transferred to the gas is equal to the decrease of its internal energy. Then, the equation of the process in terms of the variables T and V isA. (a) `TV^(((gamma-1))/(2))=C`B. (b) `TV^(((gamma-2))/(2))=C`C. (c) `TV^(((gamma-1))/(4))=C`D. (d) `TV^(((gamma-2))/(4))=C`

Answer» Correct Answer - A
`dQ=-dU` or `dU+dW=-dU`
or `2dU+dW=0`
`:.` `2[nC_VdT]+pdV=0`
or `2[n((R)/(gamma-1))dT]+pdV=0`
or `(2nRdT)/(gamma-1)+((nRT)/(V))dV=0`
or `((2)/(gamma-1))(dT)/(T)+(dV)/(V)=0`
Integrating we get,
`((2)/(gamma-1))In(T)+In(V)=In(C)`
Solving we get
`TV^((gamma-1)/(2))=const ant`


Discussion

No Comment Found

Related InterviewSolutions