1.

Appropriately matching the information given in the three columns of the following table. Column 1Column 2Column 3(I)If a, b, c ϵR−{0} such that a≠b≠cand 1a+1b+1c=0 and A=⎡⎢⎣1+a1111+b1111+c⎤⎥⎦,then(i)A is singular matrix(P)|adj A|=|A|2(II)If α, β, γ ϵ R, andA=⎡⎢⎣1cos(α−β)cos(α−γ)cos(β−α)1cos(β−γ)cos(γ−α)cos(γ−β)1⎤⎥⎦,then(ii)A is singular matrix(Q)adj(adj A)=|A|A(III)If ω≠1 be cube root of unity and(iii)A is non-singular matrix(R)|A| is equal toA=⎡⎢⎣1+2ω100+ω200ω2111+ω101+2ω202ωωω22+ω100+2ω200⎤⎥⎦is equal to minimum value of,thencos−1(x−1x)+cos−1(y2y+1)+cos−1(z2+z+1)(where x, y, z are real numbers)(IV)If a, b, c ϵR−{0} such that a≠b≠c,andA=⎡⎢⎢⎣0(a−b)3(a−c)3(b−a)30(b−c)3(c−a)3(c−b)30⎤⎥⎥⎦,then(iv)Invertible(S)|A−1|=1|A| Which of the following is only correct combination ?

Answer»

Appropriately matching the information given in the three columns of the following table.

Column 1Column 2Column 3(I)If a, b, c ϵR{0} such that abcand 1a+1b+1c=0 and A=1+a1111+b1111+c,then(i)A is singular matrix(P)|adj A|=|A|2(II)If α, β, γ ϵ R, andA=1cos(αβ)cos(αγ)cos(βα)1cos(βγ)cos(γα)cos(γβ)1,then(ii)A is singular matrix(Q)adj(adj A)=|A|A(III)If ω1 be cube root of unity and(iii)A is non-singular matrix(R)|A| is equal toA=1+2ω100+ω200ω2111+ω101+2ω202ωωω22+ω100+2ω200is equal to minimum value of,thencos1(x1x)+cos1(y2y+1)+cos1(z2+z+1)(where x, y, z are real numbers)(IV)If a, b, c ϵR{0} such that abc,andA=
0(ab)3(ac)3(ba)30(bc)3(ca)3(cb)30
,then
(iv)Invertible(S)|A1|=1|A|

Which of the following is only correct combination ?




Discussion

No Comment Found