1.

\begin{array}{l}{\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\csc \theta} \\ {\frac{1-\sin \theta}{1+\sin \theta}=(\sec \theta+\tan \theta)^{2}} \\ {\frac{1-\cos \theta}{1+\cos \theta}=(\cot \theta-\csc \theta)^{2}}\end{array}

Answer»

26)(cost*cost+sint*sint)/sint=1/sint=cosect27)(1-sint)/(1+sint) =((1-sint)(1-sint)/(1+sint)(1-sint)) =(1-2sint+sint*sint)/(1-sint*sint) =(1-2sint+sint*sint)/(cost*cost) =sect*sect-2sect*tant+tant*tant =(sect+tant)(sect+tant)28)(1-cost)/(1+cost) =((1-cost)(1-cost)/(1+cost)(1-cost)) =(1-2cost+cost*cost)/(1-cost*cost) =(1-2cost+cost*cost)/(sint*sint) =(cosect*cosect-2cosect*cott+cott*cott) =(cosect-cott)(cosect-cott)



Discussion

No Comment Found