1.

c^2cos^2B+b^2cos^2C+bc cos(B-C) =1/2 (a^2+b^2+c^2)?

Answer»

c2 cos2B + b2 cos2 C + bc cos (B-C)

= (cos B + b cos C)2 - 2 bc cos B cos C + bc cos (B-C) (∵ a2+b2 = (a+b)2 - 2ab)

= a2 - bc (cos(B+C) + cos(B-C)) + bc cos (B-C) (∵ 2 cosB cosC = cos(B+C) + cos(B-C))

And b cos C + c cos B = a

= a2 - bc cos (B+C)

= a2 - bc cos(180° - A) (∵ A+B+C = 180°, therefore B+C = 180° - A)

= a2 + bc cos A

= a2 + bc x \(\frac{b^2+c^2-a^2}{2bc}\) (∵ cos A \(=\frac{b^2+c^2-a^2}{2bc})\)

= a2 + 1/2 (b2+c2-a2)

= 1/2 (2a2+b2+c2-a2)

= 1/2 (a2+b2+c2)

Hence proved.



Discussion

No Comment Found

Related InterviewSolutions