InterviewSolution
Saved Bookmarks
| 1. |
Calculate the instantaneous value at 60° , average value and RMS value of an alternating current whose peak value is 20 A. |
|
Answer» Peak value of current, I = 20 A Angle, θ = 60° [θ = ωt] (i) Instantaneous value of current, i = lm sin ωt = Im sin θ = 20 sin 60° = 20 x \(\frac{\sqrt 3}{2}\) = 10√3 = 10 x 1.732 i = 17.32 A (ii) Average value of current, lav = \(\frac{2I_m}{π}\) = \(\frac{2 \times 20}{3.14}\) (iii) RMS value of current, IRMS = 0.707 Im or \(\frac{I_m}{\sqrt2}\) = 0.707 x 20 IRMS = 14.14 A |
|