

InterviewSolution
1. |
Calculate the number of atoms present in 2 gram of crystal which has face-centred cubic (FCC) crystal lattice having edge length of 100 pm and density 10 g cm-3. |
Answer» Given: Density (d) = 10 g cm-3 Edge length (a) = 100 pm = 100×10–12 m = 100×1010 cm Mass of crystal = 2 g To find: Number of atoms Formula: Density =\(\frac{Mass}{Volume}\) Density=\(\frac{Mass}{Volume}\) ∴ Volume =\(\frac{Mass}{Density}\) ∴ Volume = \(\frac{2\,g}{10\,g\,cm^{-3}}=0.2\,cm^3\) Volume of unit cell = a3 = (100×10–10 cm)3 = 1×10-24 cm3 Number of unit cells in 2 g of crystal =\(\frac{total\,volume}{volume\,of\,unit\,cell}\) =\(\frac{0.2\,cm^3}{1\times10^{-24}cm^3}\) = 0.2×1024 unit cells ∵ The given unit cell is of fcc type, therefore, it contains 4 atoms. ∴ 0.2×1024 unit cells will contain 4×0.2×1024 = 0.8×1024 atoms = 0.8×1024 atoms = 8×1023 atoms Ans: Number of atoms present in 2 g of given crystal is 8×1023 atoms. |
|