

InterviewSolution
Saved Bookmarks
1. |
Calculate the values of `sigma`, `l` (mean free path),`Z_(1)` and `Z_(11)` for oxygen at `300 K` at a pressure of `1 atm`. Given `b=3.183xx10^(-2) dm^(3)mol^(-1)`. |
Answer» Number of molecules per unit volume `N^(*)=(P)/(kT)`, where `k=` Boltzmann constant `:. N^(*)=(1 atm)/((1.38xx10^(-23)JK^(-1))(300K))` `=0.241xx10^(22)m^(-3)` `=2.41xx10^(22)m^(-3)` The van der Waals constant is `b=4N_(A)((4)/(3)pir^(3))` `:. r=((3b)/(16 pi N_(A)))^(1//3)` `=((3xx3.183xx10^(-2)dm^(3) mol^(-1))/(16xx3.14xx6.023xx10^(23)mol^(-1)))^(1//3)` `=1.467xx10^(-9)dm` Therefore, `sigma` (collision diameter)`=2r` `=2xx1.467xx10^(-9) dm` `=2.934xx10^(-10)m` Average speed `u_(av)=swrt((8RT)/(pi M))` `={(8(8.314JK^(-1)mol^(-1))(300 K))/((3.14)(0.032 kg mol^(-1)))}^(1//2)` `=445.6 m s^(-1)` Mean free path `l=(1)/(sqrt(2)pi sigma^(2)N^(*))` `=(1)/((1.414)(3.14)(2.934xx10^(-10)m)^(2)(241xx10^(23)m^(-3)))` `=3.18xx10^(-7)m` `Z_(1)=sqrt(2)pi sigma^(2)u_(av)N^(*)` `=(1.414)(3.14)(2.934xx10^(-10)m)^(2)(445.6 m s^(-1))xx(241.0xx10^(23)m^(-3))` `=1.397xx10^(9)s^(-1)` `Z_(11)=(1)/(2)Z_(1)N^(*)` `=(1)/(2)(1.397xx10^(9)s^(-1))(241.0xx10^(23)m^(-3))` `=1.68xx10^(34)m^(-3)s^(-1)` |
|