

InterviewSolution
1. |
Check whether the relation R defined on the set A = {1,2,3,4,5,6} as R = {(a, b) : b = a + 1} is reflexive, symmetric or transitive. |
Answer» We have the set A = {1, 2, 3, 4, 5, 6} So, recall that for any binary relation R on set A. We have, R is reflexive if for all x ∈ A, xRx. R is symmetric if for all x, y ∈ A, if xRy, then yRx. R is transitive if for all x, y, z ∈ A, if xRy and yRz, then xRz. We have R = {(a, b): b = a + 1} ∵ Every a, b ∈ A. And A = {1, 2, 3, 4, 5, 6} The relation R on set A can be defined as: Put a = 1 ⇒ b = a + 1 ⇒ b = 1 + 1 ⇒ b = 2 ⇒ (a, b) ≡ (1, 2) Put a = 2 ⇒ b = 2 + 1 ⇒ b = 3 ⇒ (a, b) ≡ (2, 3) Put a = 3 ⇒ b = 3 + 1 ⇒ b = 4 ⇒ (a, b) ≡ (3, 4) Put a = 4 ⇒ b = 4 + 1 ⇒ b = 5 ⇒ (a, b) ≡ (4, 5) Put a = 5 ⇒ b = 5 + 1 ⇒ b = 6 ⇒ (a, b) ≡ (5, 6) Put a = 6 ⇒ b = 6 + 1 ⇒ b = 7 ⇒ (a, b) ≠ (6, 7) [∵ 7 ∉ A] Hence, R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} Check for Reflexivity: For 1, 2, …, 6 ∈ A [∵ A = {1, 2, 3, 4, 5, 6}] (1, 1) ∉ R (2, 2) ∉ R … (6, 6) ∉ R So, ∀ a ∈ A, then (a, a) ∉ R. ⇒ R is not reflexive. ∴ R is not reflexive. Check for Symmetry: ∀ 1, 2 ∈ A [∵ A = {1, 2, 3, 4, 5, 6}] If (1, 2) ∈ R Then, (2, 1) ∉ R [∵ R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}] So, if (a, b) ∈ R, then (b, a) ∉ R ∀ a, b ∈ A ⇒ R is not symmetric. ∴ R is not symmetric. Check for Transitivity: ∀ 1, 2, 3 ∈ A If (1, 2) ∈ R and (2, 3) ∈ R Then, (1, 3) ∉ R [∵ R = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}] So, if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∉ R. ∀ a, b, c ∈ A ⇒ R is not transitive. ∴ R is not transitive. |
|